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The paper features the mathematical model of computating the thermophysical

properties in the liquid, gas and two phase domain with the help of statistical

thermodynamics. The paper features all  important contributions (translation, rotation,

internal rotation, vibration, intermolecular potential energy and influence of electron and

nuclei excitation). To calculate the thermodynamic properties of real gases we developed the

cluster theory which yields better results than the virial equation. For the realm of real

liquids the Johnson-Zollweg-Gubbins model based on the modified BWR equation was

applied. The Lennard – Jones inermolecular potential was used. The analytical results are

compared with the experimental data and models obtained by classical thermodynamics and

show relatively good agreement.

KEY WORDS: phase diagrams, liquid-gas equilibria, statistical thermodynamics, real gas,

real liquid.
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This paper presents a mathematical model for computating the  thermophysical properties

using statistical thermodynamics. For real gases we developed a cluster theory, based on the

principle of average clusters which yields better results than the virial equation. For real

liquids the Johnson-Zollweg-Gubbins model based on the modified BWR and great number

of Monte Carlo and molecular dynamics simulations was applied.

For the calculations in the two-phase region  we applied the method of equilibrium

conditions between two phases. The mathematical model enables the calculation in both sub-

and supercritical region. Using the mathematical model described above we were able  to

compute thermopysical properties in the one and two-phase region and draw phase diagrams

for some technically significant refrigerants.
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Let us consider the system of N equal molecules of real gas or of real liquid. Molecules

move either individually or in small instatenous clusters [1]. The size and shape of the cluster

changes due to the existence of intermolecular and intramolecular interactions between

electrons and nuclei in the system.

The energy in such a molecules system consists of:

- kinetic energy of molecules and atoms

- intermolecular potential energy

- energy of electrons as to the energy level they belong to

- energy of nuclei as to the energy level they belong to.
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 To obtain an accurate calculation it would be necessary to solve the Schrödinger

equation for several particles [2]:
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where the sums are taken over all nuclei and electrons with appropriate masses mi and

charges qi.

Any solution of such a differential equation is a difficult task though reasonably accurate

results can be obtained by means of some generalizations:

-intermolecular forces are much weaker than intramolecular forces, therefore both

intramolecular forces and intermolecular forces can be treated quite independetly;

- intermolecular potential energy depends only on the position of nuclei in space;

-the effect of the orientation of the molecule in space has been neglected;

-it is assumed that intermolecular potential is additive;

-each of the modes of motion is independent of the others.

In spite of the above mentioned simplifications the many-body Schrödinger equation (1)

still constitutes a very hard task so we applied classical statistical thermodynamics to

computate thermodynamic functions of the state. To calculate thermodynamic functions of

state we applied  the canonical partitition [3]. Utilizing the semi-classical formulation for the

purpose of the canonical ensemble for the N indistiguishable molecules can be expressed as

follows [3]:
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where f stands for the number of degrees of freedom of individual molecule, H designates

the Hamiltonian molecule system. The canonical ensemble for the system of  N  molecules

can be like this:

FRQIQXFHOLUURWYLEWUDQV� ========= = . (3)

Thus the partition function Z is a product of terms of the ground state (0), the translation

(trans), the vibration (vib), the rotation (rot), the internal rotation (ir), the influence of

electrons excitation (el), the influence of nuclei excitation (nuc) and the influence of the

intermolecular potential energy (conf).

Utilizing the canonical theory for computating the thermodynamic functions of the state

can be put as follows [4]:
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The computation of the individual terms with the exception of the configurational integral

of the partition function and their derivatives is dealt with in the works of Lucas [3,4].
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For reasons of its characteristics of the problem the methods for solving the

configurational integral in the liquid - gas region are generally divided most crudely, into

solving the configurational integral for real gases and for real liquids.
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In real gas there are relatively weak intermolecular forces. The real gas molecules move

either individually or in small instantaneous and random clusters. To solve the

configurational integral we devised a method of clusters [1]. The method is based on the

principle of average clusters.

By dealing with a sufficiently large number N of molecules in the system an average

cluster of N1 molecules can be determined. Figure 1 features the outline of the idea of the

method of clusters illustrating the activity of intermolecular forces in clusters as well as  the

activity of intermolecular forces between clusters.

The analyze of the motion of molecules by means of the Monte Carlo method [5] indicate

the fact that the number of molecules in the average cluster is relatively low. The number of

molecules in the average cluster depends on the average intermolecular distance.

Thus the ideal gas can for instance have one molecule in any of the clusters that are,

dispersed at such distances that the intermolecular forces are negligible.

The principal idea of the method of clusters stipulates that the intermolecular potential

energy of the system can be split up to intermolecular potential energy in  clusters (Epot1) and

intercluster potential energy due to interactions between clusters (Epot2). Therefore the

potential intermolecular energy can be writen as the sum of both parts:

�SRW�SRWSRW ((( += . (7)

On hand of the suppositions from the previous chapter the configurational integral can then

be put as follows:

�FRQI�FRQIFRQI === = . (8)
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When computing the configurational integral Zconf1 the effects of mutual interactions of up

to three molecules in the cluster were taken into account. For the intermolecular potential

the Lennard-Jones potential was applied. The configurational integral Zconf1 that takes

interactions in clusters into account can be written [6,7,8]:
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Equation (9) can also be put like this [7]:
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whre f is the Mayer function [2].

Integral I1 for the case of the Lennard-Jones potential is solved by  literature [7,8,9].

Integral I2 was transformed by A.Münster [7] as follows:

��
�

�� ,,�, += , ���PQNOLM
�

�� UGUGUGIII
9

1
,

&&& ⋅⋅⋅⋅⋅= ∫∫∫ . (13)

Integral I21 is resolved in the works L.E. Reichl [9] and Hirschfelder, Curtiss and Bird [8] for

the case of the Lennard-Jones potential. The effect of the intercluster interaction can be

presented by the configurational integral Zconf2 which takes the mutual interactions of two

clusters in the system.
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where Uij stands for the potential energy between i- and j- clusters. Applying Bird´s method,

[8]  in the case of diluted systems can be put like this:

LM
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where uij  stands for the potential energy between molecule in the cluster i and molecule in

the cluster j.  Utilizing the above and taking only the mutual interaction of two clusters in the

system we can write:
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where N2  and Fij  are the number of clusters in the system, and the Mayer/s function. Integral

I1
* can be solved in the same way as I1.
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To determine the number of molecules in an average cluster of real gas we took

advantage of the experimental results of thermodynamic functions of the state obtained by

J.B. Maxwell [10], W.C. Edmister [11], as well as J.A. Barker [5] results of simulation by

means of the Monte Carlo method. After a thorough analysis the number of molecules in

individual average cluster was established:  �1� � << .

For a real liquid Johnson-Zollweg-Gubbins (JZG) [12] model based on molecular

dynamic and Monte Carlo simulations with the Lennard-Jones intermolecular potential and
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modified Benedict-Webb-Rubin equation of state (MBWR) was used. On this basis we can

express configurational free energy Aconf:
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Equation (18) accurately correlates thermophysical properties from the triple point to about

4 to 5 times the critical temperature. In equation (18) are xj´s the adjustable parameters in

the equation of state.
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Determining the equilibrium states between the liquid and the gasous phases conditions

for equlibrium are applied:

��SS�77 µ ′′=µ′′′=′′′=′ (20)

where ´ in equation (20) means the liquid phase, " means the gaseous phase and µ constitutes

the chemical potential.

Due to  the mathematical complexity of the equations in the model, the states on the

coexistence curve are obtained numerically. By applying these states, thermodynamic

properties in the two phase environment can be calculated.
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In the two-phase region the computation of thermodynamic functions of state are based

on the mixing. Figures 2, 3 and 4 illustrate the phase diagrams of the state computated by

means of the mathematical model. The figures 2 shows the creation of phase diagrams in the

liquid, gas and two-phase regions for benzene (C6H6). Figure 3 shows the creation of phase

diagrams (enthalpy, entropy, free enthalpy) depending on volume by means of numerical

simulations for acetylene (R 1150). Figure 4 shows the creation of phase diagrams

(enthalpy) depending on volume by means of numerical simulations for methane (R 50).

The  constants necessary for the computation such as the characteristic rotation-,

vibration-, electronic- etc. temperatures are obtained from  experimental data [13,14,15].

The inertia moments are obtained analytically by applying the knowledge of the atomic

structure of the molecule. Constants for Lennard-Jones potential are obtained from the

literature [2,8].
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The paper presents the mathematical model for computation of thermodynamical

functions of the state in the liquid, gaseus and two-phase region.

For the region of real  gases we developed the method of clusters based on the average

cluster with N1 molecules in the system with N molecules. For the real liquid the Johnson-

Zollweg-Gubbins model based on molecular dynamic and Monte Carlo simulations and

modified Benedict-Webb-Rubin equation of state (MBWR) was applied. The boiling curve

and the saturation curve was determinated by means of equilibrium conditions.
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A free energy

CT cluster theory

E potential energy

f Mayer function

g radial distribution function

G free enthalpy

H enthalpy, hamiltonian

h,! Planck constant

I1,I2,I1
* integrals

JZG Johnson, Zollweg, Gubbins

k Boltzmann consstant

N number of  molecules in system

N1 number of molecules in cluster

p pressure, momentum

S entropy

t time

T temperature

U internal energy

V volume

Z partition function

µ chemical potential
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ψ wave function

ρ density
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Fig. 1: Schematic outline of clusters.
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1-T=290 K 2-T=333 K 3-T=373 K
4-T=413 K 5-T=453 K 6-T=503 K

Fig. 2. Enthalpy  and free enthalpy in one- and two- phase region for C6H6
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1-T=166 K 2-T=188 K 3-T=210 K
4-T=222 K 5-T=255 K 6-T=282 K

   V(m3/kmol)

   
Fig. 3:Entropy, and free enthalpy in one- and two-phase region for acetylene (R 1150)
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1-T=122 K 2-T=133 K 3-T=144 K
4-T=190 K 5-T=250 K

Fig 4: Enthalpy in one- and two-phase region for methane (R 50)


